
We conclude by summarizing some of the many practical applications of electromagnetic waves.

16.1 | Maxwell’s Equations and Electromagnetic Waves

Learning Objectives

By the end of this section, you will be able to:

• Explain Maxwell’s correction of Ampère’s law by including the displacement current

• State and apply Maxwell’s equations in integral form

• Describe how the symmetry between changing electric and changing magnetic fields explains
Maxwell’s prediction of electromagnetic waves

• Describe how Hertz confirmed Maxwell’s prediction of electromagnetic waves

James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century (Figure
16.2). Although he died young, he made major contributions to the development of the kinetic theory of gases, to the
understanding of color vision, and to the nature of Saturn’s rings. He is probably best known for having combined existing
knowledge of the laws of electricity and of magnetism with insights of his own into a complete overarching electromagnetic
theory, represented by Maxwell’s equations.

Figure 16.2 James Clerk Maxwell, a nineteenth-century
physicist, developed a theory that explained the relationship
between electricity and magnetism, and correctly predicted that
visible light consists of electromagnetic waves.

Maxwell’s Correction to the Laws of Electricity and Magnetism
The four basic laws of electricity and magnetism had been discovered experimentally through the work of physicists such
as Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified
the incompleteness of Ampère’s law as their cause.

Recall that according to Ampère’s law, the integral of the magnetic field around a closed loop C is proportional to the current
I passing through any surface whose boundary is loop C itself:

(16.1)∮
C

B→ · d s→ = µ0 I.

There are infinitely many surfaces that can be attached to any loop, and Ampère’s law stated in Equation 16.1 is
independent of the choice of surface.
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Consider the set-up in Figure 16.3. A source of emf is abruptly connected across a parallel-plate capacitor so that a time-
dependent current I develops in the wire. Suppose we apply Ampère’s law to loop C shown at a time before the capacitor is
fully charged, so that I ≠ 0 . Surface S1 gives a nonzero value for the enclosed current I, whereas surface S2 gives zero

for the enclosed current because no current passes through it:

∮
C

B→ · d s→ =
⎧

⎩
⎨

µ0 I if surface S1 is used
0 if surface S2 is used

.

Clearly, Ampère’s law in its usual form does not work here. This may not be surprising, because Ampère’s law as applied
in earlier chapters required a steady current, whereas the current in this experiment is changing with time and is not steady
at all.

Figure 16.3 The currents through surface S1 and surface S2
are unequal, despite having the same boundary loop C.

How can Ampère’s law be modified so that it works in all situations? Maxwell suggested including an additional
contribution, called the displacement current Id , to the real current I,

(16.2)∮
C

B→ · d s→ = µ0
⎛
⎝I + Id

⎞
⎠

where the displacement current is defined to be

(16.3)Id = ε0
dΦE

dt .

Here ε0 is the permittivity of free space and ΦE is the electric flux, defined as

ΦE = ∬
Surface S

E→ · d A
→

.

The displacement current is analogous to a real current in Ampère’s law, entering into Ampère’s law in the same way. It is
produced, however, by a changing electric field. It accounts for a changing electric field producing a magnetic field, just as
a real current does, but the displacement current can produce a magnetic field even where no real current is present. When
this extra term is included, the modified Ampère’s law equation becomes

(16.4)∮
C

B→ · d s→ = µ0 I + ε0 µ0
dΦE

dt

and is independent of the surface S through which the current I is measured.
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We can now examine this modified version of Ampère’s law to confirm that it holds independent of whether the surface S1

or the surface S2 in Figure 16.3 is chosen. The electric field E→ corresponding to the flux ΦE in Equation 16.3 is

between the capacitor plates. Therefore, the E→ field and the displacement current through the surface S1 are both zero,

and Equation 16.2 takes the form

(16.5)∮
C

B→ · d s→ = µ0 I.

We must now show that for surface S2, through which no actual current flows, the displacement current leads to the same

value µ0 I for the right side of the Ampère’s law equation. For surface S2, the equation becomes

(16.6)∮
C

B→ · d s→ = µ0
d
dt

⎡
⎣ε0 ∬

Surface S2
E→ · d A

→ ⎤
⎦.

Gauss’s law for electric charge requires a closed surface and cannot ordinarily be applied to a surface like S1 alone or S2

alone. But the two surfaces S1 and S2 form a closed surface in Figure 16.3 and can be used in Gauss’s law. Because the

electric field is zero on S1 , the flux contribution through S1 is zero. This gives us

∯
Surface S1 + S2

E→ · d A
→

= ∬
Surface S1

E→ · d A
→

+ ∬
Surface S2

E→ · d A
→

= 0 + ∬
Surface S2

E→ · d A
→

= ∬
Surface S2

E→ · d A
→

.

Therefore, we can replace the integral over S2 in Equation 16.5 with the closed Gaussian surface S1 + S2 and apply

Gauss’s law to obtain

(16.7)∮
S1

B→ · d s→ = µ0
dQin

dt = µ0 I.

Thus, the modified Ampère’s law equation is the same using surface S2, where the right-hand side results from the

displacement current, as it is for the surface S1, where the contribution comes from the actual flow of electric charge.

Example 16.1

Displacement current in a charging capacitor

A parallel-plate capacitor with capacitance C whose plates have area A and separation distance d is connected
to a resistor R and a battery of voltage V. The current starts to flow at t = 0 . (a) Find the displacement current

between the capacitor plates at time t. (b) From the properties of the capacitor, find the corresponding real current

I = dQ
dt , and compare the answer to the expected current in the wires of the corresponding RC circuit.

Strategy

We can use the equations from the analysis of an RC circuit (Alternating-Current Circuits) plus Maxwell’s
version of Ampère’s law.

Solution
a. The voltage between the plates at time t is given by

VC = 1
CQ(t) = V0

⎛
⎝1 − e−t/RC⎞

⎠.

Let the z-axis point from the positive plate to the negative plate. Then the z-component of the electric field
between the plates as a function of time t is
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Ez (t) = V0
d

⎛
⎝1 − e−t/RC⎞

⎠.

Therefore, the z-component of the displacement current Id between the plates is

Id (t) = ε0 A∂Ez (t)
∂ t = ε0 AV0

d × 1
RCe−t/RC = V0

R e−t/RC,

where we have used C = ε0
A
d for the capacitance.

b. From the expression for VC, the charge on the capacitor is

Q(t) = CVC = CV0
⎛
⎝1 − e−t/RC⎞

⎠.

The current into the capacitor after the circuit is closed, is therefore

I = dQ
dt = V0

R e−t/RC.

This current is the same as Id found in (a).

Maxwell’s Equations
With the correction for the displacement current, Maxwell’s equations take the form

(16.8)∮ E→ · d A
→

= Qin
ε0

⎛
⎝Gauss’s law⎞

⎠
(16.9)∮ B→ · d A

→
= 0 ⎛

⎝Gauss’s law for magnetism ⎞
⎠

(16.10)∮ E→ · d s→ = − dΦm
dt

⎛
⎝Faraday’s law⎞

⎠
(16.11)∮ B→ · d s→ = µ0 I + ε0 µ0

dΦE
dt

⎛
⎝Ampère-Maxwell law⎞

⎠.

Once the fields have been calculated using these four equations, the Lorentz force equation

(16.12)F→ = q E→ + q v→ × B→

gives the force that the fields exert on a particle with charge q moving with velocity v→ . The Lorentz force equation

combines the force of the electric field and of the magnetic field on the moving charge. The magnetic and electric forces
have been examined in earlier modules. These four Maxwell’s equations are, respectively,

Maxwell’s Equations

1. Gauss’s law

The electric flux through any closed surface is equal to the electric charge Qin enclosed by the surface. Gauss’s law

[Equation 16.7] describes the relation between an electric charge and the electric field it produces. This is often
pictured in terms of electric field lines originating from positive charges and terminating on negative charges, and
indicating the direction of the electric field at each point in space.

2. Gauss’s law for magnetism

The magnetic field flux through any closed surface is zero [Equation 16.8]. This is equivalent to the statement that
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magnetic field lines are continuous, having no beginning or end. Any magnetic field line entering the region enclosed
by the surface must also leave it. No magnetic monopoles, where magnetic field lines would terminate, are known to
exist (see Magnetic Fields and Lines).

3. Faraday’s law

A changing magnetic field induces an electromotive force (emf) and, hence, an electric field. The direction of the emf
opposes the change. This third of Maxwell’s equations, Equation 16.9, is Faraday’s law of induction and includes
Lenz’s law. The electric field from a changing magnetic field has field lines that form closed loops, without any
beginning or end.

4. Ampère-Maxwell law

Magnetic fields are generated by moving charges or by changing electric fields. This fourth of Maxwell’s equations,
Equation 16.10, encompasses Ampère’s law and adds another source of magnetic fields, namely changing electric
fields.

Maxwell’s equations and the Lorentz force law together encompass all the laws of electricity and magnetism. The symmetry
that Maxwell introduced into his mathematical framework may not be immediately apparent. Faraday’s law describes how
changing magnetic fields produce electric fields. The displacement current introduced by Maxwell results instead from a
changing electric field and accounts for a changing electric field producing a magnetic field. The equations for the effects
of both changing electric fields and changing magnetic fields differ in form only where the absence of magnetic monopoles
leads to missing terms. This symmetry between the effects of changing magnetic and electric fields is essential in explaining
the nature of electromagnetic waves.

Later application of Einstein’s theory of relativity to Maxwell’s complete and symmetric theory showed that electric
and magnetic forces are not separate but are different manifestations of the same thing—the electromagnetic force. The
electromagnetic force and weak nuclear force are similarly unified as the electroweak force. This unification of forces has
been one motivation for attempts to unify all of the four basic forces in nature—the gravitational, electrical, strong, and
weak nuclear forces (see Particle Physics and Cosmology (http://cnx.org/content/m58767/latest/) ).

The Mechanism of Electromagnetic Wave Propagation
To see how the symmetry introduced by Maxwell accounts for the existence of combined electric and magnetic waves

that propagate through space, imagine a time-varying magnetic field B→ 0 (t) produced by the high-frequency alternating

current seen in Figure 16.4. We represent B→ 0 (t) in the diagram by one of its field lines. From Faraday’s law, the

changing magnetic field through a surface induces a time-varying electric field E→ 0 (t) at the boundary of that surface.

The displacement current source for the electric field, like the Faraday’s law source for the magnetic field, produces only
closed loops of field lines, because of the mathematical symmetry involved in the equations for the induced electric and

induced magnetic fields. A field line representation of E→ 0 (t) is shown. In turn, the changing electric field E→ 0 (t)

creates a magnetic field B→ 1 (t) according to the modified Ampère’s law. This changing field induces E→ 1 (t), which

induces B→ 2 (t), and so on. We then have a self-continuing process that leads to the creation of time-varying electric

and magnetic fields in regions farther and farther away from O. This process may be visualized as the propagation of an
electromagnetic wave through space.

Figure 16.4 How changing E→ and B→ fields propagate through space.
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16.1

16.2

In the next section, we show in more precise mathematical terms how Maxwell’s equations lead to the prediction of
electromagnetic waves that can travel through space without a material medium, implying a speed of electromagnetic waves
equal to the speed of light.

Prior to Maxwell’s work, experiments had already indicated that light was a wave phenomenon, although the nature of
the waves was yet unknown. In 1801, Thomas Young (1773–1829) showed that when a light beam was separated by two
narrow slits and then recombined, a pattern made up of bright and dark fringes was formed on a screen. Young explained
this behavior by assuming that light was composed of waves that added constructively at some points and destructively
at others (see Interference (http://cnx.org/content/m58536/latest/) ). Subsequently, Jean Foucault (1819–1868),
with measurements of the speed of light in various media, and Augustin Fresnel (1788–1827), with detailed experiments
involving interference and diffraction of light, provided further conclusive evidence that light was a wave. So, light was
known to be a wave, and Maxwell had predicted the existence of electromagnetic waves that traveled at the speed of light.
The conclusion seemed inescapable: Light must be a form of electromagnetic radiation. But Maxwell’s theory showed
that other wavelengths and frequencies than those of light were possible for electromagnetic waves. He showed that
electromagnetic radiation with the same fundamental properties as visible light should exist at any frequency. It remained
for others to test, and confirm, this prediction.

Check Your Understanding When the emf across a capacitor is turned on and the capacitor is allowed
to charge, when does the magnetic field induced by the displacement current have the greatest magnitude?

Hertz’s Observations
The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of electromagnetic
waves in the laboratory. Starting in 1887, he performed a series of experiments that not only confirmed the existence of
electromagnetic waves but also verified that they travel at the speed of light.

Hertz used an alternating-current RLC (resistor-inductor-capacitor) circuit that resonates at a known frequency

f0 = 1
2π LC

and connected it to a loop of wire, as shown in Figure 16.5. High voltages induced across the gap in the

loop produced sparks that were visible evidence of the current in the circuit and helped generate electromagnetic waves.

Across the laboratory, Hertz placed another loop attached to another RLC circuit, which could be tuned (as the dial on a
radio) to the same resonant frequency as the first and could thus be made to receive electromagnetic waves. This loop also
had a gap across which sparks were generated, giving solid evidence that electromagnetic waves had been received.

Figure 16.5 The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves.

Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he generated, confirming
their wave character. He was able to determine the wavelengths from the interference patterns, and knowing their
frequencies, he could calculate the propagation speed using the equation v = f λ , where v is the speed of a wave, f is its

frequency, and λ is its wavelength. Hertz was thus able to prove that electromagnetic waves travel at the speed of light.

The SI unit for frequency, the hertz ( 1 Hz = 1 cycle/second ), is named in his honor.

Check Your Understanding Could a purely electric field propagate as a wave through a vacuum
without a magnetic field? Justify your answer.
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